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ABSTRACT 

Forests provide the biggest carbon pool used to counter-balance the concentration of Green 

House Gases (GHG) in the atmosphere. Threats of excessive concentration of GHG to climate 

patterns has drawn much attention around the world that different measures have been taken. 

Knowledge of the amount of Carbon sequestered by forests is important for appropriate 

mitigation measures, to this end, various methods are employed for quantification of above 

ground biomass (AGB). Field techniques yields accurate results but tedious, time consuming 

and sometimes unsafe for workers. Light Detection and Ranging (LiDAR) and Radio Detection 

and Ranging (RADAR) are appropriate techniques but involves high costs and complexity in 

data processing. AGB estimation based on Unmanned Aerial Vehicle (UAV) images is the 

simple and cost-effective technique suited for small and medium size forests.  

In the current study, AGB were estimated using UAV images and compared to AGB estimated 

based on field observations. The mean AGB estimated from field data was 0.576 t/ha, 0.622 

t/ha, and 0.309 t/ha compared to 0.613 t/ha, 0.546 t/ha and 0.245 t/ha estimated using UAV 

images in sample plot1, sample plot2 and sample plot3 respectively. Likewise, the Root Mean 

Square Error (RMSE) computed for sample plot1 was 0.087 t/ha while for sample plot2 the 

RMSE was 0.015 t/ha and for sample plot3 RMSE was 0.516 t/ha. The results suggest the 

application of the method for small and medium size forests and is recommended down to local 

government authorities and individual companies in Tanzania to collect forest information that 

helps combat excessive GHG by taking appropriate measures to prevent much threats. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

 The world is experiencing abnormal climate patterns that are attributed to various factors, one 

being excessive toxic gases emissions into the atmosphere through human activities (González-

Jaramillo et al., 2018); Munishi, Mhagama, Muheto, and Andrew (2008). Various factors are 

attributed to the increase in Green House Gas (GHG) emission to the atmosphere, among which 

human activities contribute to over 75% through burning of fossil fuel by industries, fuel energy 

dependent machinery, and forest degradation (Stuart and Pedro, 1998). Large cities and towns are 

the centers of fossil fuel combustion through industries, cars, and other machines whose main 

source of energy is fuel. Such extra ordinary injection of carbon dioxide into the air leaves the 

atmosphere overwhelmed resulting in abnormal trends in climate (Vashum, 2012). To restore the 

situation and probably prevent much harm in the future, several initiatives and policies have been 

enacted for implementation at global scale, country level and individual groups.  Forests stands as 

effective means to mitigate global warming and climate change on the earth’s surface as they form 

the largest pool onto which carbon sequestration takes place on the terrestrial ecosystem. Other 

terrestrial pools that stores carbon are soil organic matter and deed woods (Vashum, 2012). Carbon 

as one of the Greenhouse gasses stored by plants, absorbs solar radiation and is maintained by 

natural balance.  When this balance is triggered, concentration of Carbon in the atmosphere 

increases making the earth’s surface warmer and upheavals in the global climate patterns may be 

experienced with associated catastrophes (Jelle G, Bart, Eickhout., Rob, & Rik, 2008). Various 

mitigation measures have been taken whose levels are determined by quantification of the amount 

of carbon emitted (Vashum, 2012). Carbon can be estimated in the three pools namely 

aboveground, belowground and deadwood (Mauya, Mugasha, Njana, Zahabu, & Malimbwi, 2019). 

The amount of carbon sequestered by forests is quantified through estimation of Above Ground 

Biomass (AGB) and the quantification may easily be done by employing remote sensing techniques  

(Shi & Liu, 2017). 

 AGB estimation is not only useful for quantification of carbon stored by forests but  has, as well, 

got extra ordinary importance in forest inventory,  it gives multipurpose ecological indicator useful 

for distinguishing different plants and animal habitats (Li, Gu, Pang, Chen, & Liu, 2018) it is also 
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considered as an indicator of ecological processes that gives information on species dominance 

over an area, hydrology, nutrient cycle, energy capture, information on suitable areas for wildlife 

(Hiroyuki et al., 2013).  

 Quantification of carbon through AGB estimation is further emphasized by the United Nations 

Framework Convention on Climate Change (UNFCCC), one of the international treaties that was 

adopted in 1992 and became operational in 1994 with the objective of stabilizing the amount of 

GHG emissions into the atmosphere and limiting feature impacts on climate caused by 

anthropogenic injection that disturbs the climate systems. Treaties  and agreements like the Kyoto 

Protocol and Paris Agreement, were enacted to enhance the efforts to combat excessive GHG 

emissions to the atmosphere through burning of fossil fuel (Oppenheimer & Petsonk, 2005). The 

Kyoto agreement targets on quantitative reduction in GHG emissions and emphasizes more on 

reduction by forest plantations and management of existing ones and the quantification of reduced 

emissions is achieved through estimation of AGB (Jelle G et al., 2008). Challenges has, 

nevertheless, been arising due to conflict of interest between the participants. Industrialized 

countries are worried of the opportunity cost they should incur as reducing emission would imply 

reducing industrial productions, and mitigation by forest stands at the expense of settlements and 

agricultural expansion. These conflict of interests has resulted into variable scales of countries 

readiness to participate in reduction of their GHG emissions (Cerbu, Swallow, & Thompson, 2011). 

An incentive-based policy, Reducing Emission from Deforestation and forest Degradation 

(REDD+), was formulated with the aim of compensating the opportunity cost incurred by 

countries, companies and individual organizations as a result of stopping using forest products for 

social and economic purposes. Araya and Hofstad (2016) points out that REDD+ stands as the 

simple and cost effective GHG emission mitigation measure that is intended to protect much of the 

forest areas conversion to cropland and source of industrial raw materials and yet pain free for 

those exercising the forgone benefits from the forests.   

The available forest resources in Tanzania can be used to fix problems caused by toxic gases 

emitted in the atmosphere. Forest covers approximately 48.1 million hectors of the main land, as 

per Global Forest Resource Assessment (Mugasha et al., 2012a). The forest cover is composed of 

Miombo woodlands which accounts for 93% of the total forest area (URT, 2017) and are found in 

the West, South and Central parts of the country. Acacia woodlands are found in the Northern 

regions, Mangrove forests along the shores of Indian ocean and the closed canopy forest along 
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Lake Tanganyika. Forests inhabits the natural ecosystem that in turn forms the national social and 

economic wealth. They are the habitat of wild animals from which the country earns income 

through tourism, further more forests are source of wetlands and have got a direct influence on 

weather as they influence water vapor content in the atmosphere which leads to ground 

precipitation (Zarnoch et al., 2004). Forest degradation through human economic activities has not 

only being affecting the forest ecosystem, but the climate patterns as well.  

Tanzania is one of the countries that agreed to participate in the international treaties to mitigate 

climate change. Its preparation for participation in the UNFCCC started in 2008 and all issues 

related to environment and carbon emission reduction strategies were vested for  monitoring in the 

Vice president’s office  and has so far performed several activities as its readiness for Reducing 

Emission from Deforestation and forest Degradation (REDD+); (1) Preparation of the national 

framework for REDD+, (2) action plan and strategy preparation for REDD+, (3) execution of nine 

REDD+ pilot projects (4) education and awareness to stakeholders (URT, 2017). 

As the participating countries in the carbon reduction treaties are  obliged to reporting the level of 

carbon emissions to UNFCCC, several methods that are employed in quantification of carbon 

sequestered by forests exists through estimation of AGB which can  be converted to carbon stock 

(Schlund & Davidson, 2018). Direct measurements made on site through convention survey 

techniques are the most accurate of all (Vashum, 2012), but the method is labor intensive, tedious, 

time consuming and therefore not practical for large area estimations (Yavaşli, 2012). RADAR and 

LiDAR are remote sensing techniques capable of penetrating below forest canopies and give 

accurate terrain information covering small to large areas are normally used though they have 

common problems of complex data processing and huge cost involvement in their operation (Sinha, 

Jeganathan, Sharma, & Nathawat, 2015). Images from Optical remote sensing sensors can be used 

to estimate AGB over large areas but the images have coarse spatial resolution that AGB estimation 

at a tree and stand level is not possible. To date, there are few studies that full address AGB 

estimation in urban forests, this study therefore attempts to present a simple and cost-effective 

technique employing images acquired using a small Unmanned Aerial Vehicle (UAV) for AGB 

estimation of small and medium size urban forests.  
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1.2 Description of the Study area 

The study was conducted at Ardhi University neighborhood located at Ubungo ward, Ubungo 

district in Dar es Salaam region. The region is located at the shores of Indian ocean in Tanzania 

between 6º 36´ and 7º 12´ south of Equator and 39º 1´ and 39º 27´ East of Greenwich Meridian as 

presented in Figure 1.1. 

Dar es Salaam is the largest city in Tanzania with the highest rate of fuel combustion from 

industries and cars and hosts the largest population whose main source of energy and construction 

material are the forest products. These social and economic needs have got impacts to the balance 

of carbon concentration in the atmosphere and therefore mitigation by forest plantations should be 

practiced. The study area was therefore chosen in an attempt to quantify the amount of AGB which 

leads to the computation of the amount of carbon trapped into these urban forests. 

 

 

Figure 1.1: Location of the study area 
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1.3 Statement of the Problem 

Deforestation and excessive emission of Green House Gases (GHGs) due to increasing population 

and industrial activities has been posing threats to the global climate and the natural balance of 

GHG concentration in the atmosphere. This alarming trend has awakened mitigation measures 

across nations that includes treaties, policies and agreements all with the aim of reverting the 

situation back to normal.  Tanzania signed an agreement to participate in reduction of Carbon 

Emissions from deforestation and forest degradation (REDD+) under the United Nations 

Framework Convention on Climate Change (UNFCCC) which became operational since 2012 

(Burgess et al., 2010). One of the most important measures to meet the UNFCC requirements on 

reducing Carbon and Green House gas emission to the atmosphere is to use simple and cost-

effective methods of measuring and updating information on forest Above Ground Biomass (AGB) 

such measurements subsequently leads to the determination of the amount of emissions (Puliti et 

al., 2017). 

 Small and medium size forest plantations can be grown and maintained in cities and towns to fix 

the alarming rate of fossil fuel injection into the atmosphere and therefore restore the balanced 

carbon cycle. The amount of fossil injections in form of carbon dioxide gas trapped in by forests 

can be known through measurement of forest AGB, (Li et al., 2018). This biophysical parameter 

has been estimated using a number of approaches that differs significantly in terms of complexity 

in data acquisition, processing, and the associated costs. Images acquired through optical remote 

sensing for instance, had been extensively used for AGB estimation for decades, with Landsat TM 

being the primary data source normally free of charge. However, data saturation especially in 

complex forest structures and poor spatial resolution hinders application of such approach (Lu, 

Chen, Wang, Moran, Batistella, Zhang, Laurin, et al., 2012).  LiDAR and RADAR are remote 

sensing approaches widely used to estimate AGB with common unique capability of penetrating 

forest canopies town to the terrain enabling computation of tree heights as the parameter useful for 

AGB estimation. However, they have common hindrances of complex data processing and huge 

costs involved in data acquisition  (Sinha et al., 2015; Vazirabad & Karslioglu, 2011). Urban forest 

is the rare studied type of forest in Tanzania and owing to this, less is said about its contribution to 

fixing the concentration of toxic gases in the atmosphere nor about the appropriate AGB estimation 

method. This study presents a simple and low-cost approach that may be considered as alternative 

AGB estimation method for small and medium size open canopy forests employing UAV images. 
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1.4 Main Objectives of the Research 

To present a simple and cost-effective approach to estimate AGB for small and medium size Urban 

forests in Tanzania using UAV images. 

 

1.5 Specific objectives of the Research 

In order to carry out this study, three specific objectives were identified: 

a) To carry out ground Forest inventory and from the data estimate forest AGB 

b) To process UAV images and then estimate forest AGB 

c) To validate the AGB estimated Using UAV images. 

 

1.6 Research questions 

The findings of this study highlight appropriate answers to the following key questions 

a) How well can the DBH and tree height derived from UAV images predict AGB? 

b) Can UAV imageries be reliable and alternative data source for small and medium size forest 

AGB estimation?  

 

1.7 Dissertation organization overview 

This work is organized in five chapters where chapter one gives an introduction of the research and 

highlights the research problem. Chapter two gives an overview of the existing research works on 

the subject matter and gives detailed explanations of the methods commonly used for AGB 

estimation, data processing techniques and gives an in-depth classification of UAV platforms. 

Chapter three explains the methods employed in the study where data acquisition and processing 

techniques are explained in detail. Chapter four presents the results of the methods employed with 

the corresponding discussion and the final chapter gives the conclusion and recommendations 

based on the key findings of the study.  
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CHAPTER TWO 

LITURATURE REVIEW 

 2.1 Above Ground Biomass Overview 

 The amount of carbon stored in plants is quantified through biomass estimations (Schlund & 

Davidson, 2018) and forests constitutes the largest terrestrial pool onto which carbon is trapped 

(Salunkhe, Khare, Kumari, & Khan, 2018). This pool has been hit by threats posed by human 

beings that the world is today witnessing abnormal trends in Green House Gas (GHG) emissions 

to the atmosphere attributed to technological inversions like industries and locomotives that inject 

excessive amount GHG in the atmosphere these emissions disturbs the natural balance of carbon 

leading to, among other things, unusual trends on climate (Figure 2.1) (Jelle G et al., 2008). Up-to-

date and accurate estimation of AGB is therefore important to quantify the mitigation measures as 

a requirement of the United Nations Framework Convention on Climate Change (UNFCCC) 

(Temesgen, Affleck, Poudel, Gray, & Sessions, 2015) 

 

 

         Figure 2.1: The effect of GHG emission into the atmosphere (Source: Centre for Climate 

and Energy Solutions-www.c2es.org)                                                                                       

http://www.123rf.com/
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 2.2 Above Ground Biomass studies  

 Quite a number of studies has been undertaken related to forest biomass around the world in an 

attempt to quantity the amount of carbon sequestered by the forests. This is attributed to the fact 

that concentration of carbon dioxide in the atmosphere accounts for over 60% of the causes of 

global warming and climate change (Vashum, 2012). 

 

 Sileshi (2014) analyzed the challenges of choosing a proper allometric model to apply when 

estimating AGB after collection of the required sample data for a particular study. The choice of 

allometric model to use becomes a challenge when more than one model exists over a particular 

species or vegetation type. The study mentioned three stages to which AGB estimation has to go 

through namely individual tree level AGB estimation, plot level AGB estimation and the mean 

values across plots for forest level AGB estimation.  Important forest parameters estimation 

influences the final estimated AGB and so the choice of an appropriate model, from existing ones 

is the matter of great concern to reduce artifacts in the final estimation. The study then analyzed 

different published allometric models and lacking clarifications on the involved parameters and 

suggested ways for users to get informed on the merits and reliabilities of the models they intend 

to apply for AGB estimation.   

  

 Macedo et al. (2018) estimated AGB in South Portugal using Normalized Difference Vegetation 

Indices derived from high resolution satellite images. Their study aimed at developing a model that 

would be used for biomass estimation for other regions. The model best estimated AGB and was 

recommended for use in similar regions. 

 

 Puliti et al. (2017) modelled AGB in Miombo woodlands of Southern Tanzania using TANDEM-

X data. The primary objective of this study was to establish a model that links AGB with 

Interferometric Synthetic Aperture Radar (InSAR) heights from World-DEM. Circular sample 

plots were designed for collecting field data for which Diameter at Breast Height (DBH) of all trees 

in each sample plot were measured, and sample tree heights measured, AGB was then estimated 

with DBH and tree heights as inputs in the model.  The study revealed that InSAR data are well 

suited for large area AGB estimation in Tropical woodlands. Despite the promising results, InSAR 
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heights requires normalization from either field sampled data or Lidar data making the process time 

consuming and costly. 

 

Lu, Chen, Wang, Moran, Batistella, Zhang, Vaglio Laurin, et al. (2012) gave an overview of 

integrating Landsat with Lidar data to overcome the saturation problem encountered with Landsat 

data when are used to estimate AGB. In this study Landsat Thematic Mapper data were used to 

estimate AGB of the Amazon forests in Brazil. Spectral signatures and textures information derived 

from the TM image led to good estimates of AGB. The main shortcoming found with this approach 

was saturation when biomass density exceeded 150 T/ha. This was due to insensitivity of spectral 

signatures as forest structures became more complex. Integrating Lidar data sets overcame 

saturation problem. It was concluded that AGB estimation using Landsat data is only suitable for 

areas with relatively simple forest structure. 

 

Deng, Katoh, Guan, Yin, and Li (2014) assessed the potentials of integrating World View 2 data 

with L-Band Synthetic Aperture Radar data to Estimate AGB at Purple Mountain national Park in 

China. The L-Band datasets, in dual polarization mode (HH and HV), were used to derive features 

relationships from scattering information and the generated NDVI maps from Landsat images were 

resample to 10m spatial resolution to match with backscatter maps. The Combined Volume Index 

model that incorporated backscattering of polarized and the spectral bands resulted into good AGB 

estimation. 

  

Mutwiri, Odera, and Kinyanjui (2017) assessed the potentials of LiDAR in estimation of tree height 

and AGB) in Londian forest, south-western Kenya. Two datasets were collected and used for this 

study; LiDAR datasets that were acquired from a sensor mounted onto an aircraft that flew at 

altitude of 1550m. Field collected data from selected sample plots were DBH and tree heights. 

LiDAR datasets were processed using Lastool where points were classified and the CHM created 

as the difference between DSM and DTM. Tree height were then extracted from the CHM and 

DBH Predicted from linear regressions. The field sampled data were used for validation. Results 

from the study shows high correlation between AGB and tree heights estimated from LiDAR 

datasets, and AGB and tree height measured from field surveys. Many studies have shown LiDAR 

to be the perfect approach for acquiring information on the structure of forest resources especially 
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in complex  and dense canopy covers, (González-Jaramillo et al., 2018; Wallace, Lucieer, 

Malenovský, Turner, & Vopěnka, 2016b), however application of LiDAR  is associated with huge 

operation costs as pointed  out by Birdal, Avdan, and Türk (2017). 

 

Iizuka, Yonehara, Itoh, and Kosugi (2017) assessed the potentials of predicting forest parameters, 

at Kiryu Hydrological Watershed near Otsu City in Japan, from UAV Photogrammetry. The study 

employed structure from Motion (SfM) algorithm to generate three-dimension models, the DSM 

and DTM from two-dimension UAV images. CHM was then generated as the difference between 

DSM and DTM from which forest parameters were extracted. The CHM was segmented to extract 

tree heights and predict DBH from tree crowns and regression analysis. The study was validated 

by field sampled data where results shown good correlation between the tested variables. This study 

and many other studies such as Kachamba, Ørka, Næsset, Eid, and Gobakken (2017),  gave 

highlights of employing the SfM algorithm and UAV photogrammetric techniques to successively 

and correctly estimate forest AGB 

 

2.3 Forest Above Ground Biomass Estimation Methods  

There is quite a number of AGB estimation approaches. Different studies like those discussed on 

the foregoing section has shown the strengths and weakness of each. Field survey methods yields 

accurate estimation but at the expense of time, cost and sometimes workers safety, while Optical 

remote sensing images comes with coarse spatial resolution and so forest parameter estimation at 

a stand level may not be achieved. Synthetic Aperture Radar (SAR) is suitable for global scale 

AGB estimation but requires complex data  processing and LiDAR  is capable of giving accurate 

forest parameters for AGB estimation but involves huge operating costs that are sometimes not 

manageable by individual and organization (Tang & Shao, 2015) 

   

AGB estimation methods can therefore be categorized into two main techniques namely field 

survey where forest inventory is directly done on site and  indirect methods where remote sensing 

data are used to estimate forest parameters which are key inputs in the  allometric models or 

regression equations adopted for AGB estimation (Sileshi, 2014). Sections 2.4 and 2.5 gives 

detailed explanations of the two main methods used for AGB estimation. 
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2.4 Field survey techniques 

Field survey methods are regarded as the most accurate estimation methods where forest 

parameters are directly measured on site at selected sample plots (Temesgen et al., 2015). The 

parameters directly measured on site are DBH, tree height and crown diameter. These parameters 

can either be measured by destructive techniques where sample trees are fell down then various 

components are measured accurately. The harvest method is often opted when developing biomass 

allometric models for use in large scale AGB estimation (Yavaşli, 2012). Non-destructive 

techniques do not involve cutting down tree, rather parameters are measured and allometric model 

applied to estimate AGB.  

 

 

 

                                                                 (Blozan, 2006) Figure 2.2: Tree height measurement 
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                                                                               (Malone, Liang, & Packee, 2009) 

 

Tree heights can be measured in the field by employing different approaches, such as measurement 

of vertical angles from the instrument line of sight to the top of the tree and horizontal distances 

from the measuring instrument to the foot of the tree (Figure 2.2) and final deduction of tree heights 

done by mathematical computations basing on the formulated geometric figures. Total stations and 

rangefinder are some of the measuring instruments which can used. 

Tree DBH measurement is easily done on site and usually at a height of 1.3m from the foot of the 

tree (Figure 2.3) using a special measuring tape with clippers or a normal tape where 

circumferences of tree stems are measured and later DBH calculated using mathematical models 

(Malone et al., 2009). Generally estimating AGB by field survey methods is the time consuming, 

tedious, costly and may put workers safety at a threat and therefore other methods are preferred 

instead. 

2.5 Remote Sensing Techniques 

  Remote sensing technology has come with complete revolution on the methods of capturing data 

for the forest ecosystem. Tedious, destructive and sometimes hazardous field techniques are now 

Figure 2.3: Tree DBH Measurement guidelines 
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confined to allometric model’s development. Massive forest data may now be collected by remote 

sensing techniques (Holopainen, Vastaranta, & Hyyppä, 2014). With remote sensing techniques, 

important forest parameters useful for AGB estimation can be estimated to a reasonable accuracy. 

These techniques can be categorized into two main groups based on the sensor namely active 

remote sensors and passive sensors. The techniques are discussed in the following sub-sections.   

 

2.5.1 Active Sensors 

 Active sensors have the capability to generate energy making it possible to capture data day and 

night and therefore overcoming obstacles encountered with optical remote sensing that depends on 

the sun’s illumination. 

  

(i) Synthetic Aperture Radar (SAR)    

 SAR is the remote sensing technique useful for studies on forest structure on the global coverage 

and estimation of forest above ground biomass. SAR technique has got distinctive features such as 

penetrating forest canopies, cloud and fog, non-dependence on solar as the source of energy and 

therefore rendering it as the all-weather, day and night imaging technique (Sinha et al., 2015).  The 

most useful bands for AGB estimation are X and C bands which scatters from the top of forest 

canopies and so carries much information of tree leaves. Higher frequency L , S and P bands have 

higher forest canopy penetration capacity and so they facilitate estimation of forest canopy height 

(Schlund & Davidson, 2018). When two or more SAR images of different phase angles are used, 

the technique is called Interferometric SAR (Schreyer, Geis, & Lakes, 2016). SAR technology  may 

be looked at as the only technique capable of providing global data for forest structure though it 

has some constraints that limit its wide applications such as complex data acquisition, processing 

and associated huge operation costs (Sinha et al., 2015) 

 

(ii) Light Detection and Ranging (LiDAR) 

LiDAR is an active remote sensing technique that uses light beams to scan the objects and collects 

massive points. Pulses of laser are emitted from the scanner mounted on either unmanned aerial 

vehicle platform, manned aerial vehicles or on a stationary platform. Once the laser pulses hit the 

objects and basing on the speed of the laser pulse, and the time taken, distances between the scanner 

and the scanned objects are determined. The speed, time and scan angle, enables computation of 
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three dimension position of reflected objects basing on the correction signals sent from GNSS 

receiver and on board Inertial Measurement Unit (Jamie et al., 2012).The beauty of this technology 

is the capabilities of the laser pulses to penetrate forest canopies, making it a unique technology to 

capture data for forest resource inventory (Lenda, Uznański, Strach, & Lewińska, 2016).The 

acquired point data are used to generate DSM and DEM and subsequent data for AGB estimation 

(NOAA, 2012). Though LiDAR remote sensing stands as an alternatives technique for capturing 

information on the vertical structure of forests that leads to the most accurate DEM, its associated 

high costs, data processing complexity creates a barrier on its application for AGB estimation 

(Birdal et al., 2017). 

2.5.2 Passive Sensors  

Passive sensors depend on the Solar’s energy illumination to capture and record the information 

reflected from the targets and microwave passive sensors records thermal energy signals emitted 

by objects. 

(i) Optical Satellite Images 

 Satellite images acquired by passive sensors have been used to estimated AGB for large areas by 

utilizing spectral reflectance or Vegetation Indices such as Normalized Vegetation Index (NDVI). 

However, use of optical satellite images alone is faced by data saturation problem, poor spatial 

resolution and cloudy images that makes AGB estimation at tree and stand level impractical. 

Following such constraints, other techniques for AGB estimation are preferred (Deng et al., 2014)  

 

(ii) Unmanned Aerial Vehicle (UAV) Photogrammetry 

 Remote piloted aircrafts have long been in the military use for decades now. In the 1990s these 

types of aircrafts descended into civilian use and are now in the market for a number of applications 

including science and research, agricultural monitoring, forest management, monitoring of natural 

hazards and other applications (Watts, Ambrosia, & Hinkley, 2012). Figure 2.4a-f provides a 

summary of UAV platform categories as classified by Watts et al. (2012);  

a) Macro Air Vehicle (MAV): these are very small platforms normally designed for military 

applications to carry out short mission profile surveillance in hostile and dangerous 

scenarios. They are portable by individual soldiers and capable of flying to an altitude less 

than 330m with battery flight endurance lasting in 30 minutes. 
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b) Vertical Take-Off and Landing (VTOL): these are the rotary wings platforms that does 

not require a runway for take-off and landing and therefore suitable for limited open and 

areas. The platforms are portable with rechargeable batteries that can endure a flight of less 

than an hour and can fly on variable heights. They are widely applied for small and medium 

size forest and agricultural studies, rescue operations, capturing data in complex urban 

settings and many other civilian applications 

c) Low Altitude, Short Endurance (LASE): these are small UAV platforms with fixed 

wings design designed for quick field operations with 1 to 2 hours battery flight endurance. 

d) Low Altitude, Long Endurance (LALE): these are upper versions of small UAV 

platforms with an improved battery endurance and with different civilian applications. 

e) Medium Altitude, Long Endurance (Wallace, Lucieer, Malenovský, Turner, & 

Vopěnka): these are platforms with larger designs than small UAV platforms. They can fly 

up to an altitude higher than 9000m with the battery that can endure long hours of 

continuous field operations when the flying altitude is at most 5000m and therefore suitable 

for large area studies. The platform is mostly utilized for military operations but can as well 

be used for civilian applications such as wildfire imaging. 

f) High Altitude, Long Endurance (HALE): these platforms are the largest and newest of 

all autopiloted systems and are even bigger than many civilian manned crafts. They can fly 

to an altitude higher than 20,000m covering extremely larger areas for global scale mapping 

and military applications but are cost prohibitive for most of the civilian applications.  

Outside the US military applications, NASA and National Oceanic and Atmospheric 

Administration (NOAA) employ HALE for global scale data collections for earth and 

atmospheric investigations. 
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(a)                                                                   (b) 

 

C)                                                              d) 

 

e)                                                                 f) 

                                                                - (a) MAV (b) VTOL (c) LASE (d) LALE & MALE  

(e) MALE (f) HALE (Watts et al., 2012) 

  Figure 2.4: Types of UAV platforms 
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UAV has gained wide applications in many scientific disciplines including forest resource 

management practices. UAV has emerged as the simple, cost effective and alternative method of 

mapping then deriving forest parameters that enables estimation of forest above ground biomass. 

With the flight plan done in a computer, the autopilot software controls cameras mounted on the 

UAV platform to capture a series of overlapping two-dimension images which are later processed 

using Structure from Motion (SfM) algorithm to reconstruct three-dimension images for Digital 

Surface Models (DSM) and other derived products useful for estimation of Above Ground 

Biomass.  

 

 Structure from Motion (SfM) with its origin from Computer Vision, is the algorithm that uses the 

same principles as stereo photogrammetry of reconstruction of three-dimension models from two 

dimension overlapping images. The only basic difference in that SfM automatically generates the 

geometry of the scene, camera position and orientation through image bundle adjustment 

procedure. The reconstructed 3D models are transformed from image space coordinate system to 

real world system by georeferenced the model using photo Ground Control Points (GCPs) 

accurately measured by field survey techniques. With the georeferenced 3D model, products like 

Digital Surface Model (DSM), Digital Terrain Model (DTM) and orthophoto mosaic may be 

generated (Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012).  

A research conducted by Otero et al. (2018), reveals that UAV photogrammetric techniques 

performs quite well in a forest with homogeneous species. Due to poor penetration of optical 

images under the canopies, ground filtering algorithms are used to derive Digital Elevation Models 

(Özdemir & Remondino). 

UAV images are processed using various software packages that utilize SfM algorithm. A study 

conducted by Murtiyoso, Grussenmeyer, Börlin, Vandermeerschen, and Freville (2018) reports 

that Agisoft Metashape pro software and its predecessor versions simplifies the photogrammetric 

workflow and attains accurate processing results. The study, however reported fewer detailed 

descriptions of how the processing algorithms works. With newer versions   processing reports are 

given and may, at least, be used to trace and identify problems in case of unsatisfactory results. 
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2.5.3 Image Segmentation 

 Lim et al. (2015) defined Image segmentation as the partitioning of an image into homogeneous 

similar disjoints that are non-overlapping. Image pixels with similar values are grouped together 

to form image objects that can be analyzed in different platforms to give spatial details for different 

applications. Schiewe. (2002) points out the principles that underlies images segmentation 

techniques, he highlighted the principles of neighborhood and similarity. Similarity measure 

compares elements of one object and the other in the immediate neighborhood under a certain 

threshold and fuses them together to make one object.  

 

Image segmentation has been used for forest studies for tree crown delineation to identify 

individual trees to simplify tree counting and tree height estimation, classification thence 

calculation of vegetation indices. The invention of this technique has improved processing of 

remote sensing images to derive important forest parameters and has made it possible to acquire 

datasets covering a large area at a considerable short time and less cost when compared to data 

acquisition by conventional field techniques(Baatz & Schäpe, 2000). 

 

Avola et al. (2019) discussed in detail the possibility to overcome a narrow choice of channels in 

most of UAV images where there is no Near Infrared (NIR) band. Various indices that does not 

incorporate NIR channel have been developed and the study points out that they perform even 

better.  

 

2.6 Allometric Models for AGB estimation in Tanzania  

  Allometric models are mathematical equations that relates variables which are used for above 

ground biomass estimation from either field inventory data or remotes sensing data. Allometric 

models are developed by measuring tree variables mainly by destructive sampling where selected 

samples trees are fell down and respective variables such diameter at breast height, tree height, and 

density are measured (Jucker et al., 2017). Allometric models vary with forest species, topography 

and location, therefore one model may be suitable for certain forest species in one location but may 

not predict well in the other, for this reason various allometric models are developed for biomass 

estimation basing on the aforementioned considerations (Malimbwi, Eid, & Chamshama, 2016). 
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In Tanzania the forest is composed of a diversity of plant species such as dry miombo woodlands, 

wet miombo woodlands, mangrove forests on the shorelines, montane forest and plantation forests 

(W.A. Mugasha et al., 2012). Following this, a number of allometric models has therefore been 

developed to cater for this bio-diversity and finally yield reliable results on biomass estimation.  

Malimbwi et al. (2016) compiled a list of developed models that covers the diversity of plant 

species used for biomass estimation in Tanzania as presented in Table 2.1 

 

Table 2.1: Allometric models for AGB estimation in Tanzania (Malimbwi et al., 2016; 

Munishi et al., 2008) 

S/n Biomass Model Forest type for application 

1 AGB=0.1027 × 𝑑𝑏ℎ2.4798 

AGB=0.0763 × 𝑑𝑏ℎ2.2047 × ℎ𝑡0.4918 

Miombo Woodlands 

2 AGB = 0.25128 × 𝑑𝑏ℎ2.24034 

AGB=0.19633 × 𝑑𝑏ℎ2.07919 ×   ℎ𝑡0.29654 

Lowland and humid Montane 

 

3 AGB= 0.25128 × 𝑑𝑏ℎ2.24034 

AGB=0.19633 × 𝑑𝑏ℎ2.07919 ×  ℎ𝑡0.29654 

Mangrove forests 

4 AGB= 0.3154 × 𝑑𝑏ℎ2.3189 

AGB= 0.0292 × 𝑑𝑏ℎ2.0647 × ℎ𝑡1.0146 

Acacia Woodlands 

5 AGB= 0.0550 × 𝑑𝑏ℎ2.5968 

AGB= 0.0357 × 𝑑𝑏ℎ2.4679 × ℎ𝑡0.2809 

Pine forests 

6 AGB= 0.3356 × 𝑑𝑏ℎ2.1651 

AGB= 0.1711 × 𝑑𝑏ℎ2.0047 × ℎ𝑡0.3767 

Plantations(hardwood) 

7 AGB = 0.5927 × 𝐷𝐵𝐻1.8316 Urban forest 

9 AGB= 2.234966 × 𝑑𝑏ℎ1.43543 

AGB=0.192416 × 𝑑𝑏ℎ1.204898 ×  ℎ𝑡1.204898 

Baobab tree 
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2.7 Statistical analysis 

Statistical analysis is the standard procedure employed in researches to assign meanings to 

meaningless numbers that helps to draw correct interpretation thence reporting of research findings 

(Ali & Bhaskar, 2016). It is an important ingredient of a research that is commonly used to analyze 

the collected or processed data and finally come up with meaningful summaries (Ibrahimi, 2018). 

Ali and Bhaskar (2016) categorized methods of analyzing data; 

a) Descriptive statistics: this type of analysis establishes the relationship between variables 

of the sample or population by using mean, median and mode and provides a summary that 

best represents the data where other information such as minimum and maximum values, 

range, standard deviation and variance can be presented. 

b) Inferential statistics: this makes use of random samples of the population for analysis 

whose findings reflects the whole population. It uses statistical tests (t-test) to establish the 

relationship between variables where the calculated probability with values that ranges 

between 0 and1 commonly known as the P-value is used as the criteria for comparison of 

variables. 

However, Andrade (2019) highlighted very important cautions regarding the misinterpretations of 

the statistical testing. As per this study, concluding a research basing on P-Value, the arbitrary 

threshold set on a continuous random variable, may sometimes lead to false conclusions as P-Value 

does not, in itself, justify or nullify the findings of the research, rather, other measures of size such 

as mean values of the samples, the nature of the sample, sample size, reliability of the sample 

collection method should be considered. In the same context, Gibbons and Pratt (1975) also 

emphasized that statistical significance or non-significance does not necessarily imply practical 

significance or non-significance though stands as an objective measure, when other factors are 

considered, that helps to reach a practical decision making. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Overview  

The flow of this research consists of the following activities; reviewing the existing literatures on 

AGB estimation, forest inventory on the selected sample plots, Ground Control Points 

establishment on the research area, data processing, AGB estimation, statistical analysis and 

validation of the results. The study integrates GIS, remote sensing and photogrammetric techniques 

to estimate forest AGB using UAV images taken in an off- leaf season covering the three selected 

sample plots, and the overall study area. The images were pre-processed and processed using 

Agisoft Metashape Professional, QGIS and some were performed in ArcGIS. Results were 

validated by comparing AGB estimated based on UAV images with that estimated based on field 

inventory data. 

 Field data were collected on the selected sample plots using a tape measure for DBH measurements 

and a total station that was used to collect data for tree height and sample plot positions. Field data 

were later processed and AGB computed using appropriate allometric models given in Table 2.1. 

The flow of the methods employed in this study from data acquisition to validation of the results 

is presented on Figure 3.1. 
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 Figure 3.1: Methodology flow chart 
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3.2 Instrument and software used  

 Various instruments/tools and software were employed at various stages of the study as listed in 

the table 3.1. 

 

Table 3.1: Equipment and software used 

S/N Software Instrument/Tool 

 Name Use Name Use 

1 Excel Data processing 

and Statistical 

analysis 

Tape measure Forest Inventory 

3 Agisoft Metashape 

Professional 

UAV image 

Processing 

Data sheets Recording of 

forest inventory 

data 

4   Leica TS 9 Total 

Station 

Photo control 

extension, 

sample plot 

location & tree 

height 

measurements 

5 QGIS 3.8 Image 

Processing 

  

 

3.3 Data Collection 

This section describes the data and the methods employed on the data collection process. Forest 

field inventory data and UAV images were used for this study. The field inventory data consisted 

of tree stem perimeters, vertical angles, sample plots corner coordinates and horizontal distances 

and the UAV images covering the study area.   

3.3.1 UAV Images 

 The UAV images utilized were acquired in September 2018 using a fixed wing light weight UAV 

flying at an altitude of 409m above the ground, resulting into 829 images with Ground Sample 

Distance (GSD) of 4.8cm. A pose file that describes camera positions and orientation for image 

alignment and block adjustment was provided together with the images. 
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3.3.2 Ground Control Points establishment 

 Ground Control Points (GCPs) were established to enhance the accuracy of the models and the 

resulting point cloud. According to a study conducted by Oniga, Breaban, and Statescu (2018) at 

least three GCPs are required to enhance accuracy of the three dimension information derived from 

UAV products. It was further revealed that GCPs have higher influence on the quality and accuracy 

3D products generated from the images and therefore the higher the number of GCPs used for 

georeferencing the higher the resulting accuracy. 

Using the existing unprocessed UAV photographs, appropriate points which clearly appeared in 

the photographs were chosen and reconnaissance done on site to identify the selected points to be 

used as GCPs. The points were chosen with a criteria of meeting good coverage of the study area 

(Figure 3.2) In this study twelve control points and four check points were identified in the 

photographs as well as on the ground. These were coordinated using a high precision Leica TS 09 

total station basing on a network of existing control point around Ardhi University neighborhood 

in   WGS 84 coordinate system. The existing control had no elevation above mean sea level, and 

therefore differential levelling using SOKKIA BM 40 automatic level was undertaken to induce 

the control points with elevation above mean sea level from a known benchmark. 

 

 

Figure 3.2: GCPs and Check Points distribution over the study area 
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3.3.3 Forest field Inventory 

The study area consists of planted trees where three 75m by 35m, 51m by 41m and 58m by 38m 

rectangular like sample plots were selected. The position of each plot was measured using the Leica 

TS 09 Total station (Figure 3.4). In each plot ten trees were selected randomly as done by Otero et 

al. (2018) and Kachamba et al. (2016) for heights measurements.  The total station was then used 

to measure distances of each from the instrument setup and angle of inclination from the reflector 

prism positioned on the foot of each tree (Blozan, 2006) as shown in diagram presented in Figure 

3.3. 

 

 

Figure 3.4: Tree height measurement procedu  (Blozan, 2006) 

 

From the diagram, the angle of inclination ‘a’ and the horizontal distance ‘D2’ were measured 

onsite and equations 3.1 and 3.2 were used to compute the tree height: 

 A = D2×(tan(a)) ……………………………………………………………………................ (3.1) 

Total tree height (H) = A+B…………………………………………………………............... (3.2) 

Where; D2 = Horizontal distance from the instrument to the foot of the tree, B= Height of the prism 

rod (target), A = Height of the tree from top of the prism rod, a = Angle of inclination 

Figure 3.3: Tree height measurement procedures 
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     Figure 3.4: Measurement of sample plot position and tree parameters 

                

Tree Diameter at Breast Height (DBH) was measured for all trees in each sample plot using a 

measuring tape at the height of 1.3m from the foot of each tree (figure 3.6), tree with DBH less 

than 5cm were excluded in the study, as stipulated in a study conducted by Kachamba, Ørka, 

Gobakken, Eid, and Mwase (2016).  A total of 63 tree were measured in sample plot1, 24 in sample 

plot2 and 63 in sample plot3 (figure 3.5). All the measurements were entered in the prepared data 

sheet for further processing.  
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.                                                                                

                   

(b) 

 

 

The measured perimeters were later converted to DBH using equation 3.3 (Blozan, 2006)  

  
𝑃

𝜋
= 𝐷  ……………………………………………………………………………………. (3.3) 

Assuming that tree stems are circular, where; P = Perimeter, Π =Pi, D= Stem diameter = DBH 

 

 

 

 

 

 

 

 

 () 

(a) 

Figure 3.5:Tree composition in (a)Sample plot1 (b) Sample plot3 
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3.4 Data Processing 

This section describes the processing of the data with the aim of deriving the input parameters for 

forest AGB estimation basing on both field inventory and UAV images 

3.4.1 Field based data 

Field data collected from three sample plots chosen as the representative of the study area entailed 

tree stem diameters measured at breast height, sample tree heights, and positions of the sample 

plots. The ranges of measured DBH and selected sample tree heights per sample plot are presented 

in figure 4.1(a and b respectively).  

 

3.4.2 UAV Images Processing 

 The raw UAV images are associated with a pose file information that gives the details of camera 

position information and orientation parameters. The images were processed using Agisoft 

Metashape Professional software. The software was chosen due to its capability to process UAV 

Figure 3.6: Measurement of tree stem perimeter 
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images and produce reliable results through Structure from Motion and image matching algorithms 

imbedded into the software (Ota et al., 2015) 

This study used 66 overlapping images which were loaded into the software together with the pose 

file where each image was tagged with its corresponding camera position and orientation 

parameters (Table 3.2). The photographs were assessed for their quality with a threshold of 0.5 

units calculated from highly focused part of the image, this is because poorly focused and blurred  

images influences alignment of the photos and need to be eliminated before processing of the 

photos (Agisoft, 2019). The assessment showed the quality of all photos loaded was well above the 

recommended threshold of 0.5 units (Table 3.3). Camera position coordinate system was 

transformed from world geographic coordinate to projected WGS 84 coordinate system to match 

with the GCPs coordinate system. Image matching was then executed which resulted into 

alignment of all the photographs and sparse point cloud. The accuracy for photo alignment was set 

to high to enhance accuracy in camera positions. 

Table 3.2: Part of Camera position and orientation Parameters 

Photograph ID Latitude Longitude Altitude(m) Yaw (◦) Pitch (◦) Roll (◦) 

DSC00506.jpg -6.764001 39.214199 403.7 0.2 -1.7 194.2 

DSC00507.jpg -6.764398 39.2141 403.5 1.4 -1.4 194.2 

DSC00508.jpg -6.764831 39.213989 403.4 1.4 -2 193.7 

DSC00509.jpg -6.765261 39.21389 403.4 -0.1 -2.3 192.9 

DSC00510.jpg -6.765692 39.213791 403.4 -0.9 -2 193.6 

DSC00511.jpg -6.766144 39.213673 403.4 1.3 -1.7 194.2 

DSC00512.jpg -6.766576 39.213573 402.8 -0.9 -0.5 192.7 

DSC00513.jpg -6.767007 39.213478 402.4 -1.1 -0.3 193.9 

DSC00514.jpg -6.767432 39.213367 403.2 0.7 -0.9 194.1 

DSC00598.jpg -6.767724 39.214443 404.5 -0.2 -3.7 13.2 

DSC00599.jpg -6.76729 39.21455 405.5 0.8 -6.4 14.5 

DSC00600.jpg -6.766848 39.214664 405.1 1 -7.1 13.8 

DSC00601.jpg -6.766439 39.21476 404.1 0.4 -5.7 13.1 

DSC00602.jpg -6.765973 39.214867 403 -0.5 -3.8 13.4 

DSC00603.jpg -6.765566 39.214962 402 0.3 -2.6 13.6 

DSC00604.jpg -6.765117 39.215073 402.1 1.2 -2.1 14.6 

DSC00605.jpg -6.764723 39.215172 402.5 0 -2.4 14 

DSC00606.jpg -6.76429 39.215275 402.7 -1.5 -3.1 13.4 

DSC00607.jpg -6.763826 39.215385 403.1 0.1 -2.8 13.4 

DSC00608.jpg -6.763413 39.215488 404 -2.1 -5.1 13.2 

Table 3.3: Part of image quality assessment report 
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 Photo Label Size Aligned Quality(m) Camera 
Make 

Focal length 

DC00378 7360×4912 Yes 0.878454 SONY 35mm 

DC00379 7360×4912 Yes 0.894912 SONY 35mm 

DC00380 7360×4912 Yes 0.886013 SONY 35mm 

DC00381 7360×4912 Yes 0.864282 SONY 35mm 

DC00382 7360×4912 Yes 0.844559 SONY 35mm 

DC00383 7360×4912 Yes 0.826887 SONY 35mm 

DC00384 7360×4912 Yes 0.829252 SONY 35mm 

DC00385 7360×4912 Yes 0.836158 SONY 35mm 

DC00386 7360×4912 Yes 0.833639 SONY 35mm 

DC00387 7360×4912 Yes 0.847713 SONY 35mm 

DC00388 7360×4912 Yes 0.857505 SONY 35mm 

DC00389 7360×4912 Yes 0.800688 SONY 35mm 

DC00391 7360×4912 Yes 0.848674 SONY 35mm 

DC00392 7360×4912 Yes 0.879462 SONY 35mm 

 

To enhance the generated model accuracy, GCPs were imported for georeferencing. The software 

uses markers to optimize photo alignment and therefore each GCP marker was manually dragged 

and placed on the appropriate position on the overlapping photos. This georeferencing process 

removes linear errors that occurred during photo alignment, the non-linear component of the errors 

is removed by Camera optimization process (Agisoft, 2019). Optimization parameters namely focal 

lens of the camera, principal point coordinates, skew transformation, radial distortion and 

tangential distortions were all checked and finally the model was updated. 

3.4.3 Dense point Cloud 

A total of 66 images taken at a flying altitude of 409m with ground resolution of 5.4cm/pix and 

covering area of 0.743km² were processed resulting into a dense point cloud of 117,988,013 points. 

The Root Mean Square Error (RMSE) of the tie points averaged over all images used in the study 

area was 1.24 pix (Table 3.4). The RMS reprojection error was 0.186236 (1.24246 pix) with the 

maximum projection error of 1.02897 (26.7898 pix).  

The calibration coefficients and correlation matrix for the parameters f, cx, cy, b1, b2, k1, k2, k3, 

k4, p1, p2, p3, and p4 (Agisoft, 2019) are shown in table 4.2  where f= focal length of the camera, 

cx, cy = Principal Coordinates, b1, b2 = non-orthogonal transformation coefficients, k1, k2, k3, k4 

= radial distortion coefficients, p1, p2, p3, p4 = tangential distortion coefficients. 
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 Appendix 1.4 presents deviation and correlation values of the parameters used in the bundle 

adjustment and dense image matching. No external parameters were imported and therefore the 

correlation values are from the internal camera orientation parameters that portray the degree of 

correlation of the respective parameters. The standard deviation for the camera position and 

rotation angles are shown by the positive diagonal elements of the covariance matrix and the 

average camera location error is shown in Table 3.5 and the camera locations as presented in Figure 

3.7 as well. 

  

ILCE-7R (35mm) 7360 x 4912  35 mm 4.89 x 4.89 μm No 

 

Number of images: 66  

Flying altitude: 409 m  

Ground resolution: 5.4 cm/pix  

Coverage area: 0.743 km² 

Camera stations:  66 

Tie points: 66,844  

Projections: 252,955 

Reprojection error: 1.24 pix 

 

Table 3.5: Average camera location error 

1.80339 7.77842 46.4167 7.98474 47.0985 

Table 3.4: Camera and image details 
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Figure 3.7: Camera locations  

 

The estimation of internal and external camera orientation parameters during photo alignment 

comes with errors in the estimates. The alignment process is influenced by overlap of the adjacent 

images and the shape of the features surface resulting into non-linear deformation of the generated 

model to some extent. Linear transformation of the model with the 7 transformation parameters 

used for translation, similarity, rotation and scaling, during model georeferencing cannot resolve 

the nonlinear deformations, rather errors due to linear misalignment. The non-linear deformation 

is dealt with by camera optimization process that refers on the GCPs to adjust the point cloud.  

The algorithm that implements optimization in Metashape adjusts the estimated point coordinates 

and camera parameters thereby minimizing the projection errors (Agisoft, 2019). 

The individual GCPs and check points projection error estimates is presented in Table 3.6 and 3.9 

while the overall GCPs and check points projection root mean square error is presented in Table 

3.7 - 3.8 
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Table 3.6: Individual Ground Control Points projection error 

-2.30932 2.5952 -2.61526 4.34829 0.456 (10) 

0.185934 3.35203 0.621135 3.41415 0.345 (15) 

1.8263 2.22954 -2.09997 3.56596 0.216 (7) 

-0.55312 -0.596579 -2.33715 2.47469 0.497 (8) 

-0.537146 -1.51647 3.83567 4.1594 0.470 (8) 

-2.044 1.0113 4.28248 4.85183 0.330 (8) 

1.43105 -6.89481 -2.44427 7.45391 0.629 (18) 

3.08309 2.33369 1.66359 4.20941 0.863 (17) 

-1.49525 -1.70018 -0.756278 2.38712 0.282 (8) 

2.67047 4.03173 1.17466 4.97655 0.440 (13) 

3.79043 -4.39376 -3.28248 6.66687 0.552 (9) 

-7.68743 -0.0670433 4.56362 8.94023 0.480 (10) 

2.99805 3.13661 2.77556 4.33897 5.15076 

  

Table 3.7: Overall Ground Control Points projection RMSE 

12 2.99805 3.13661 2.77556 4.33897 5.15076 

  

Table 3.8: Overall Check Points projection error RMSE 

3 6.62782 5.87733 12.2365 8.85838 15.1063 

 

Table 3.9: Individual Check Points projection error 

9.02448 3.63616 -13.848 16.9243 0.356 (17) 

-4.02101 1.44516 16.0444 16.6037 0.372 (2) 

-5.84585 9.39782 0.013915 11.0677 0.306 (11) 
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6.62782 5.87733 12.2365 8.85838 15.1063 

 

3.4.3 Point cloud classification 

Recent development in automated ground filtering algorithms based on machine learning and 

implemented in various software has enabled automated classification of point cloud data into 

multiple classes for considerable short time and to a reasonably good accuracy, therefore generation 

of reliable DSM and DEM (Chen et al., 2016). In this study, the parameter settings for quality were 

set to high to get accurate results, and the filtering mode set to moderate taking in consideration 

the processing time. The generated point cloud was classified into six classes namely bare ground, 

roads, vegetation, building, man-made objects and cars based on geometric and colour information 

(Agisoft, 2019). The classification was performed with the main target being to discriminate trees 

and the bare ground from the rest of the objects and form their independent classes (figure 3.8). 

Pesso, Amorim, and Galo (2018),  Özdemir and Remondino (2019) however, admits the 

complexity in the discrimination of urban scene point cloud data that multiple objects comprised 

of natural and man-made are represented by the data using automatic approaches, to this end robust 

algorithms are needed to minimize the classification errors. Visual inspection of the classification 

results as it appears in figure 4.4 was convincing to have successfully discriminated the forest and 

the bare ground from other objects.   
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Figure 3.8: Dense point cloud classification 

 

3.4.4 DSM, DEM and Mosaic generation 

DSM was generated using the vegetation class whose data represented the top of the forest canopy 

(figure 4.3a). DEM was generated using the bare ground class with the interpolation mode enabled 

to interpolate the ground points at locations where point density was sparse due to tree canopies 

(Figure 4.3b). This approach was also used in a study conducted by  Kachamba et al. (2016).  

Two other important facts were taken into consideration regarding the capability of UAV images 

to capture much information of the ground under forest canopies (i) the study area is not covered 

by dense tree canopies (ii) the images were taken on an off-leaf season in September. 

The ortho-mosaic of the study area with pixel size of 5cm was then generated using 66 images that 

covered the study area (Figure 4.2) and was used to delineate individual tree crowns  
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 3.4.5 Canopy height models  

 To extract tree heights, canopy height models were generated as the difference between DSM and 

DEM using equation 3.4 (NOAA, 2012; Ota et al., 2015). 

CHM = DSM – DEM ………………………………………………………………………… (3.4) 

Where: CHM = Canopy Height Model, DSM = Digital Surface Model, DEM = Digital Elevation 

Model. The DSM represents the top of tree canopy and DEM represents the foot of trees. Four 

CHMs were generated using QGIS packages version 3.8, where the three CHMs represents for the 

sample plots as shown on Figure 4.4(a, b, c) and one CHM covering the overall study area (Figure 

4.4d). The CHMs were clipped to individual sample plot raster for further analysis 

 

3.4.6 Sample plot tree crown delineation  

Tree crowns delineation for the sample plots was done from respective image mosaics aiming at 

creating individual tree crown polygons. Image mosaics were chosen for crown delineation because 

manual delineation is even simple as objects appear clearer as compared to canopy height model 

raster (Figure 3.9a). Sample plots CHM raster were then overlaid with their respective tree crown 

polygon shapefiles to extract tree heights (Figure 3.9b). The maximum value of each tree crown 

was generated and the data were merged with their corresponding crown areas. The attribute 

information was used further analysis. 
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 (a₁)                                                                         (b₁) 

 

 

(a₂)                                                                          (b₂) 

 

 

(a₃)                                                                        (b₃) 

 

 

Figure 3.9: (a) delineated sample plot mosaic (b) Sample plot CHMs overlaid with tree crown polygons 
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3.4.7 Image Segmentation 

Image segmentation was implemented to delineate individual tree crowns for the overall study area. 

The technique was implemented using multi-resolution algorithm which uses the bottom up 

regional merging technique where image pixels are merged basing on the principle of minimizing 

heterogeneity meanwhile maximizing similarity (Baatz & Schäpe, 2000). The derived tree crowns 

were used to extract tree heights and predict DBH as important parameters for forest above ground 

biomass estimation. Similar approaches were also employed by Ibrahim and Osman (2014) for 

extracting tree parameters, to this end, the mosaic covering the study area was segmented and the 

results were visually assessed on the mosaic (Figure 4.2). Then Excess Green Index (ExGI), as 

shown on figure 4.6, was computed and used to discriminate vegetation from other objects. ExGI 

is among the best contrast based vegetation discrimination index and its performance is parallel to 

NDVI (Asier & Lluis, 2019). The segmented image mosaic was classified into three classes basing 

on ExGI values to discriminate tree crowns from other objects like bare land, roads and buildings.  

Equation 3.5 was used to compute ExGI (Avola et al., 2019).  

 

ExGI = 2*G – (R+B) ………………………………………………………………. ………… (3.5) 

Where ExGI = Excess Green Index, G = Green band, R= Red band, B= Blue Band. The tree crown 

polygons covering the study area were then overlaid on the corresponding CHM (Figure 3.9) to 

extract tree heights. 

 

3.4.8 Tree Variables extraction 

  Tree heights, crown area and crown diameter were the only variables extracted from the 

segmented canopy height models.  Tree heights were extracted by taking the maximum pixel value 

of each tree crown in the segmented canopy height models. The segmentation results were used for 

further analysis. Diameter at breast height is the parameter not easily extracted from UAV images 

and this is because of the inability of UAV photographs to capture much details below the canopies 

as lower parts are obscured by the crowns (Guerra-Hernández et al., 2017). Different models has 

been developed to predict diameter at breast height from UAV images (Ibrahim & Osman, 2014). 

The study utilizes the models developed by Mahmut (2004), Lawrence (1995) and Batbaatar et al. 

(2019)  to extract DBH,  equation 3.6 and 3.7. 
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   DBH= aₒ + a₁(CD) ………………………………………………………………………... (3.6) 

 DBH=aₒ𝐶𝐷𝑎₁……………………………………………………………………  (3.7) 

Where DBH = Diameter at breast height, CD = Crown diameter, aₒ and a₁ are regression 

coefficients.  A research conducted by Penggang, Kai, Chen, Hailin, and Yinhui (2019) highlights 

that tree crown is the essential parameter that can be used to derive models for DBH prediction. In 

this study tree crown polygon areas were computed using QGIS 3.8 package and  tree crown 

diameters, were computed from crown areas using equation 3.7 (Lim et al., 2015). 

 D = √ ( 
4𝐴

π
 ) ……………………………………………………………. (3.8) 

Where D = Crown diameter, A = Crown area 

 

3.5 AGB estimation 

 AGB estimation was done at tree level from the two datasets acquired from field inventory and 

those extracted from UAV images. As for field inventory data, DBH and mean tree height for each 

sample plot was used to estimate individual tree biomass and plot level biomass was obtained as 

the summation of individual tree biomass. The same approach was applied for data extracted from 

UAV images but in this case each polygon had its respective maximum pixel value representing 

tree heights. The  allometric models ( equation 3.9 and3.10) as compiled by Malimbwi et al. (2016) 

and Munishi et al. (2008)  were used for AGB estimation of the study area for all datasets. 

 

AG𝐵 = 0.1711 × (𝐷𝐵𝐻)2.0047 × ℎ𝑡0.3767 ………………………………………….. (3.9)   

 

𝐴𝐺𝐵 = 0.5927 × 𝐷𝐵𝐻1.8316……………………………………………. …… (3.10) 

 

Where AGB = Above ground biomass, DBH = Diameter at breast height, ht =   Tree 

height. Equation 3.10 is opted when DBH is used as the only input into the model. 

 

3.6 Validation of the results 

 AGB estimated basing on the field inventory data was regarded as the most accurate (Temesgen 

et al., 2015) and therefore was used as a comparison to AGB estimated from UAV images. 
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Statistical tests were employed to compare the variables extracted from UAV images and the field 

inventory data. Furthermore, equations 3.11(Jucker et al., 2017)  and 3.12 (W.A Mugasha et al., 

2015)   were used to evaluate the  accuracy of the employed AGB estimation method. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐴𝐺𝐵ₒ − 𝐴𝐺𝐵ₚ)²𝑁

𝑖=1 ……………………………………………………. ..... (3.11) 

MPE = 
100

n
 × Ʃ (

𝑌−𝑌𝑖

Yi
) × 100………………………………………………………………… (3.12) 

Where RMSE = Root mean square error, N = Sample size,  𝐴𝐺𝐵ₒ = Observed AGB,  𝐴𝐺𝐵ₚ = 

Predicted AGB, MPE = Mean Prediction Error, Y= Predicted AGB, Yi = Measured AGB 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Overview 

The chapter presents the results and discussion of the research activities with regard to the specific 

objectives. Statistical approached was used to analyze the results and finally validation was done 

by comparing AGB estimated using UAV images with that estimated using field collected data.   

 

4.2 Field based DBH and tree height 

The ranges of measured DBH and selected sample tree heights per sample plot are presented in 

figure 4.1a-b, where the minimum and maximum DBH were 11.46cm and 111.41cm for plot1, 

5.09cm, 89.46cm for plot2, 5.09cm and 101.85cm for plot3 with mean DBH of 36cm, 41.35cm 

and 26.32cm respectively (Figure 4.1a). 

At least ten trees were randomly selected for height measurement in each sample plot. The mean 

tree height measured in sample plot1 was 14.61m, 10.27m in sample plot2 and 11.67m in sample 

plot3 as presented in Figure 4.1b 
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Figure 4.1: Distribution of measured (a) DBH (b) tree height 
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4.3 UAV based extracted information 

Various information was extracted from UAV images at different processing stages. DSM, DEM, 

CHM and ortho mosaic were generated for use in subsequent sequence of processes that led to 

estimation of AGB.  

4.3.1 Ortho mosaic 

A two-dimension full resolution ortho mosaic in original RGB color bands was generated to display 

the continuous surface onto which results of the processing stages are based (Figure 4.2). It was 

generated based on the DSM with mosaic Blending mode. The ortho mosaic was segmented and 

classified into 3 classes (Figure 4.5) to filter out buildings and other man-made features. Further 

analysis was carried out by computing Excess Green Index on the vegetation class where small 

trees were filtered out basing on attained values (Figure 4.6).  The tree crowns generated by 

polygons using the filtered vegetation class was finally overlaid on the CHM to extract tree heights 

(Figure 4.7) 

4.3.2 DSM, DEM and CHM 

The elevation ranges for the DSM is between 32.59m and 103.36m and for the DEM elevation 

range is between 32.11m and 93.90m above mean sea level. Subtraction of the DEM from DSM 

resulted in CHMs with height ranging between 0m-30m for the overall study area (Figure 4.4d). 

The tree height range for sample plot1 is between 0m and 18.47m (Figure 4.4a) while in sample 

plot2, tree height ranges between 0m-14.63m and between 0m-18.63m (Figure4.4b), for sample 

plot3 (Figure 4.4c). 
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Figure 4.2: Ortho mosaic view 
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(a) 

 

(b) 

 

 

 

 

Figure 4. 3:(a) DSM (b) DEM 
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(d) 

 
Figure 4.4: CHMs for (a) Sample plot1 (b) Sample plot2 (c) Sample plot3 (d)Overall study area 
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 Figure 4.5: Classification of the segmented mosaic 
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  Figure 4.6: Excess Green Index 

 

   Figure 4.7: Tree crown polygons overlaid on the CHM 
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4.3 Statistical analysis 

Statistical analysis was performed as a standard procedure to compare the results of the analyzed 

variables. In this study, one of the objectives was to compare the AGB estimated using field data 

and the corresponding AGB estimated based on UAV images. 

 

4.3.1 Descriptive statistics for sample plots inventory data 

The descriptive statistics for measured DBH and tree heights for all sample plots as explained in 

section 3.4.3 are presented in Table 4.8 and able 4.9 respectively. 

 

Table 4.1: Descriptive statistics for the measured tree DBH 

 Sample plot1(cm) 

Sample 

Plot2(cm) 

     Sample      

Plot3(cm) 

Mean 36.844 41.353 26.327 

Standard Error 3.079 3.953 2.090 

Standard Deviation 24.241 18.958 16.723 

Sample Variance 587.602 359.405 279.669 

Minimum 11.459 5.093 5.093 

Maximum 111.408 89.464 101.859 

Observation 63 24 64 

Confidence Level (95.0%) 6.156 8.198 4.177 

 

Table 4.2: Descriptive statistics of the measured tree height samples 

  

      Sample 

Plot1(m) 

          Sample 

Plot2(m) 

Sample        

Plot3(m) 

Mean 14.605 10.271 11.665 

Standard Deviation 3.957 2.560 3.422 

Sample Variance 15.662 6.553 11.711 

Minimum 6.572 7.029 5.823 

Maximum 19.044 13.888 16.120 

Sample Size 11 10 9 

Confidence Level (95.0%) 2.831 1.968 2.861 
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4.3.2 Descriptive Statistics for the UAV derived data 

 The tree heights and diameter at breast heights derived from the processed UAV images were also 

statistically analyzed for each sample plot and the overall study area as presented in table 4.10, 

table 4.11 and table 4.12. 

The minimum and maximum predicted DBH for sample plot1 having 63 samples was 38.26cm and 

48.5cm respectively with the mean predicted DBH value of 44.13cm and standard deviation 

2.28cm while sample plot2 with 24 tree crown samples, the minimum and maximum DBH were 

32.43cm and 48.20cm respectively, mean value of 41.37cm and standard deviation of 3.93cm. For 

Sample plot3 with 65 trees, the minimum and maximum predicted DBH were 10.12cm and 

46.60cm respectively, the corresponding mean and standard deviation were 24.57cm and 7.27cm 

respectively (table 4.10) 

 

Table 4.3: Descriptive Statistics of the predicted tree DBH 

  
    Sample 

Plot1(cm) 

  Sample 

Plot2(cm) 

                    Sample 

Plot3(cm) 

Mean 44.128 41.372 24.566 

Standard Error 0.290 0.820 0.908 

Standard Deviation 2.280 3.930 7.267 

Sample Variance 5.197 15.447 52.807 

Minimum 38.257 32.428 10.120 

Maximum 48.501 48.195 46.595 

Sample Size 63 24 65 

Confidence Level (95.0%) 0.579 1.700 1.815 

 

Table 4.4 gives a summary of sample plots derived tree height statistics where in sample plot1, the 

minimum and maximum tree heights were 6.0m and 18.48m respectively. The mean tree height 

was 13.57m and standard deviation 2.66m while for sample plot2 the minimum and maximum 

heights were 7.73m and 14.61m respectively. The corresponding mean was 10.70 and standard 

deviation was 2.08m. Minimum and maximum heights derived for sample plot3 were 6.47m and 

17.80m respectively where the mean height was 13.36m and standard deviation being 2.62m 
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Table 4.4: Descriptive Statistics of the derived tree height 

  

         Sample 

plot1(m) 

         Sample 

Plot2(m) 

            Sample 

Plot3(m) 

Mean 13.567 10.704 13.365 

Standard Error 0.338 0.442 0.328 

Standard Deviation 2.659 2.075 2.623 

Sample Variance 7.069 4.304 6.879 

Minimum 5.996 7.733 6.474 

Maximum 18.478 14.613 17.795 

Sample size 62 22 64 

Confidence Level 

(95.0%) 0.675 0.920 0.655 

 

 

Table 4.5 presents the summary of statistical analysis performed on derived tree heights and 

predicted DBH for the overall study area with sample size of 2929 trees. 

 Results shows that the minimum and maximum derived tree heights were 3.20m and 20.87m 

respectively giving a height range of 17.67m. The derived mean tree height was 9.59m while the 

standard deviation was found to be 3.63m. 

On the other hand, the predicted DBH was between the minimum value of 26.06cm and the 

maximum value of 67.77cm, giving a DBH range of 41.71cm. The mean DBH was 36.87cm and 

the standard deviation was 5.31cm. 

 

Table 4.5: Descriptive statistics for tree height and DBH  

     Derived Tree height(m)               Predicted DBH (cm) 

Mean 10.200 16.340 

Standard Error 0.057 0.019 

Standard Deviation 3.112 1.034 

Sample Variance 9.684 1.069 

Sample size 2929 2929 

Confidence Level (95.0%) 0.113 0.037 
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4.4 Comparison between measured and extracted parameters 

The DBH and tree heights extracted from UAV images were validated by comparing them to 

those collected by field methods. 

4.4.1 Statistical tests 

 Paired two sample t-tests were conducted to test if there were any significant differences between 

the sample plots mean DBH measured on site and that predicted from UAV images. 

Results (table 4.8) shows that there is no significant difference between mean DBH from site 

inventory data and mean DBH predicted from UAV images in sample plot1 as t critical two tail > 

t stat(P>0.05). For sample plot2, results also shows that there is no significant difference between 

the mean DBH from site inventory data and mean DBH predicted from UAV images t stat < t 

critical two tail (P>0.05). Likewise results for sample plot3 shows no significant difference 

between the mean DBH computed from field inventory data and the mean DBH predicted from 

UAV images: t stat < t critical two tail (P>0.05) as shown in table 4.13  

 

Table 4.6:Sample plot DBH Paired Two Sample for Means 

  Sample plot1 DBH Sample plot2 DBH Sample plot3 DBH 

 Statistics 

Field 

DBH 

UAV 

DBH 

Field 

DBH 

UAV 

DBH 

Field 

DBH 

UAV 

DBH 

t Stat -2.344 -0.005 0.752 

P(T<=t) one-tail 0.011 0.498 0.228 

t Critical one-tail 1.670 1.717 1.669 

P(T<=t) two-tail 0.022 0.996 0.455 

t Critical two-tail 2.000 2.074 1.998 

    

 

 

Two sample t tests assuming unequal variances were conducted for all sample plots to see if there 

were any significant differences between the mean tree height for the randomly selected sample 

trees and the mean tree height extracted from UAV images. Results shows that, in all sample plots, 
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no significant differences between the mean tree height measured on site and mean tree height 

derived from UAV images were observed, as s Stat<t critical two tail (P>0.05). Summary of the t 

test results are presented in Table 4.7  

Table 4.7: Two-Sample for mean tree height assuming Unequal Variances 

 

Sample plot1 tree 

heights 

Sample plot2 tree 

heights 

Sample plot3 tree 

heights 

 Field UAV Field UAV Field UAV 

t Stat 0.923 -0.612 -1.130 

P(T<=t) one-tail 0.187 0.275 0.144 

t Critical one-tail 1.782 1.753 1.833 

P(T<=t) two-tail 0.374 0.549 0.288 

t Critical two-tail 2.179 2.131 2.262 

    

 

 

4.5.2 Above Ground Biomass Estimation 

The above ground biomass estimated on the overall study area from 2929 trees detected in the 

UAV images had the mean of 0.099 t/ha and standard deviation of 0.011 t/ha.  

 

 Table 4.8: Descriptive Statistics of estimated AGB  

  Estimated Biomass(t/ha) 

Mean 0.112 

Standard Error 0.001 

Standard Deviation 0.027 

Sample Variance 0.001 

Minimum 
0.081 

Maximum 0.155 

Sum 290.446 

Count 2929 

Confidence Level (95.0%) 0.001 
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4.7 Validation of the results 

Validation of the results was carried out by comparing the AGB estimated from UAV images to 

AGB estimated using field collected data. The comparison was done for each sample plot using 

descriptive statistics, and t-tests together with RMSE which was computed to assess the accuracy 

of the prediction method employed. 

 

4.7.1 Comparison of the estimated AGB on the sample plots 

 Table 4.9 presents a summary of descriptive statistics of estimated AGB on the sample plots. 

Comparing the results, the total AGB estimated from field inventory data in sample plot1 was 

36.269 t/ha and that estimated from UAV images was 38.604 t/ha. In sample plot2, the total AGB 

estimated from field inventory data was 14.93 t/ha and the total AGB estimated from UAV images 

was 13.123 t/ha, while total AGB estimated from field inventory data in sample plot3 was 20.092 

t/ha when compared to the total of 15.932 t/ha estimated from UAV images. The mean biomass 

from field inventory data in sample plot1 was 0.576 t/ha with standard deviation of 0.704 t/ha, 

while the mean AGB from UAV images was 0.613 t/ha giving a standard deviation of 0.057 t/ha. 

Likewise, mean AGB from field inventory data in sample plot2 was 0.622 t/ha and the 

corresponding standard deviation was 0.487 t/ha as compared to 0.544 t/ha as the mean AGB and 

standard deviation of 0.09 t/ha estimated from UAV images. The mean AGB estimated from field 

inventory data in sample plot3 was 0.309 t/ha with the standard deviation of 0.426 t/ha while the 

mean AGB estimated from UAV images was 0.245 t/ha and the standard deviation was 0.221 t/ha. 
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Table 4.9: Estimated Biomass Descriptive Statistics 

 

  

Sample Plot1 

Estimated 

Biomass(t/ha) 

Sample Plot2 Estimated 

Biomass(t/ha) 

Sample Plot3 Estimated 

Biomass(t/ha) 

  

Field 

Biomass 

UAV 

Biomass 

Field 

Biomass 

UAV 

Biomass 

Field 

Biomass 

UAV 

Biomass 

Mean 0.576 0.613 0.622 0.546 0.309 0.245 

Standard Error 0.089 0.007 0.099 0.018 0.053 0.027 

Standard 

Deviation 0.704 0.057 0.487 0.090 0.426 0.221 

Sample 

Variance 0.496 0.003 0.237 0.008 0.181 0.049 

Total Biomass 

(t/ha) 36.269 38.604 14.93 13.123 20.092 15.932 

Count 63 63 24 24 65 65 

Confidence 

Level (95.0%) 0.177 0.014 0.205 0.038 0.106 0.054 

 

Further comparison was performed where the paired two samples t- test for means was run to see 

if there were any notable differences between the mean tree AGB estimated from field inventory 

data and mean AGB estimated from UAV images (Table 4.10). The results show that there was no 

any significant difference between the mean tree AGB estimated from field inventory data and the 

mean tree AGB estimated from UAV images for t stat was less than the t critical two tail (P>0.05) 

in sample plot1. Likewise results presents no significant difference between the mean tree AGB 

estimated from field inventory data and the mean tree AGB estimated from UAV images as t stat 

< t critical two tail (P>0.05). 
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Table 4.10: t-Test - Sample plots Estimated Biomass Paired Two Sample for Means 

 

Sample plot1 Estimated 

Biomass 

Sample plot2 

Estimated Biomass 

Sample plot3 Estimated 

Biomass 

 

Field 

Biomass 

UAV 

Biomass 

Field 

Biomass 

UAV 

Biomass 

Field 

Biomass 

UAV 

Biomass 

t Stat -0.475 
0.765 1.072 

P(T<=t) one-tail 
0.340 0.226 0.144 

t Critical one-tail 
1.669 1.714 1.669 

P(T<=t) two-tail 
0.679 0.452 0.287 

t Critical two-tail 
2.0 2.008 1.998 

 

 

4.7.2 Biomass prediction Accuracy analysis 

To assess the accuracy of the predicted biomass, RMSE for each sample plot was computed using 

equation 3.11 and the following results were achieved: 

 Sample plot1 𝑅𝑀𝑆𝐸 =  √
1

63
∑ (36.269 − 38.604)²63

𝑖=1  = 0.087 t/ha   

 Sample plot2 𝑅𝑀𝑆𝐸 =  √
1

24
∑ (14.93 − 13.123)²24

𝑖=1    = 0.015 t/ha  

Sample plot3 𝑅𝑀𝑆𝐸 =  √
1

65
∑ (20.092 − 15.932)²65

𝑖=1   = 0.516 t/ha 

 Furthermore, MPE for each sample plot were calculated using equation 3.12 where in sample plot1 

the MPE was 0.099m while in sample plot2 MPE was -0.504m and in sample plot3 MPE was -

0.318m 

 

4.9 Overview of key findings 

This study compared results of AGB estimated using UAV images to AGB estimated using field 

collected data which are treaded as the most accurate and therefore suitable for comparison 

(Salunkhe et al., 2018). Standard test methods were used where t-test results show that there is no 

significant difference between AGB estimated using both approaches.  
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Furthermore, the RMSE computed for each sample plot shows promising results for the method to 

be employed for AGB estimation. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Overview 

This chapter gives a summary of the overall study findings in relation to research questions and 

finally gives some recommendations that may be adopted for future work to come up with the most 

realistic outcomes.  

5.2 Conclusion 

Many techniques for AGB estimation exist with varying degree of complexity in terms of data 

capture, processing and associated costs. This study used UAV images to estimate AGB of a small 

size urban forest as the simple and low-cost technique. The parameters extracted were used as 

inputs in the allometric models to estimate AGB. The technique was employed to assess if the 

extracted parameters can yield AGB similar to that estimated using field collected data. 

 The achieved results show that AGB estimated using UAV images has no significant difference 

from AGB estimated using data collected in the field, implying that Predicted DBH and tree heights 

extracted from UAV images well predicted AGB of the study area. This achieved small AGB 

discrepancy may be attributed to the fact that UAV images were timely taken in an off-leaf season 

that tree canopy obstruction for generation of accurate DEM was minimal.   

UAV images were also assessed as to how they can produce reliable data for AGB estimation in 

small and medium size forests. The assessment was done by comparing the AGB estimated based 

on UAV images with AGB estimated based on field inventory data on each selected sample plot. 

The presented results with small significant difference suggest that UAV images can be effectively 

used for AGB estimations of small and medium size forests as can achieve reasonable accuracies.  

5.3 Recommendations 

Based on the study findings, the following recommendations are given 

1) The use of UAV based techniques for management of forest resources should be 

encouraged down to local government authorities and individual companies in Tanzania as 

the simple and cost-effective technique for AGB estimation and collect other useful forest 

information that helps combat GHG in the atmosphere thence facilitate taking of 

appropriate measures to prevent much threats to climate patterns. 
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2) To diverse the choice of AGB estimation and results validation methods with increased 

possibility of extracting much forest parameters for future works, cameras capable of 

capturing information in red, green, blue and Infrared channels should be considered when 

taking the images. 

3) To enhance the reliability of the DEM generated from UAV images, capturing of images 

should be done on an off- leaves season to overcome tree canopy cover obstructions. 

4) More works are encouraged to establish AGB estimation models for urban forest  
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List of appendices 

Appendix 1.1: Forest inventory data sheet 

 

 

 

 

 

 

Tree ID Sample Plot No DBH(cm) Desription Sample Plot Corner X Sample Plot Corner Y Tree position X Tree Position Y Vertical Angle

Msc Research- Forest Inventory -  Ardhi University    Neighbourhood       Date------------------------------------------
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Appendix 1.2: Level booking sheet 

 

 

 

 

Station BS IS FS HI Corr RL Remarks

LEVEL SHEET
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Appendix 1.3: List of Ground Control Points used for georeferencing 

 
 
Point Id Easting Northing Elevation Description 

CA09 523946.7877 9252343.791 39.461 GCP 

CP3 523537.359 9252483.106 61.005 GCP 

PT01 523891.1522 9251950.165 42.1083 GCP 

PT02 523818.6954 9251937.886 45.9431 GCP 

PT04 523939.2038 9252150.589 39.2962 GCP 

PT11 523818.1794 9252243.017 44.051 GCP 

PT13 523810.4429 9252285.412 44.0552 GCP 

T1 523416.704 9252523.753 70.846 GCP 

T4 523466.099 9252544.527 70.862 GCP 

BB2 523910.394 9252342.549 40.7423 GCP 

BB3 523914.9209 9252370.945 40.6253 GCP 

BB4 523929.9049 9252368.244 40.389 GCP 
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Appendix 1.4: Calibration coefficients and correlation matrix 
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